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ABSTRACT 
 
Recent research, such as the Active Virtual Network 
Management Prediction (AVNMP) system, aims to use 
simulation models running ahead of real time to predict 
resource demand among network nodes. If accurate, 
such predictions can be used to allocate network 
capacity and to estimate quality of service. Future 
deployment of active-network technology promises to 
complicate prediction algorithms because each “active” 
message can convey its own processing logic, which 
introduces variable demand for processor (CPU) cycles. 
This paper describes a means to augment AVNMP, 
which predicts message load among active-network 
nodes, with adaptive models that can predict the CPU 
time required for each “active” message at any active- 
network node. Typical CPU models cannot adapt to 
heterogeneity among nodes. This paper shows 
improvement in AVNMP performance when adaptive 
CPU models replace more traditional non-adaptive 
CPU models. Incorporating adaptive CPU models can 
enable AVNMP to predict active-network resource usage 
farther into the future, and lowers prediction overhead. 
 

INTRODUCTION 
Growing availability of processing power and bandwidth 
in communication networks encourages innovative 
approaches to network management. One specific 
innovative idea envisions injecting simulation models 
into network nodes, and then running those models in 
parallel with the operational network, but ahead in time, 
in order to predict traffic and resource use. If the models 
predict accurately, then network management systems 
can better allocate capacity in anticipation of varying 
demands and network operators can better estimate the 
quality of service (QoS) that customers can expect. This 
paper describes one approach, the Active Virtual 
Network Management Prediction (AVNMP) system [1], 
which aims to predict network traffic. AVNMP uses 
active-network technology [2] to inject simulation 
models into network nodes, and to run those models 
concurrently with corresponding applications. AVNMP 
then compares estimated performance against measured 

performance, and maintains predictions from the 
simulation within specified error bounds, when 
compared against measurements from the application. 

AVNMP can estimate resource requirements for 
each node in a conventional communication network, 
such as the Internet. In conventional networks, accurate 
estimates for message quantity and size directly imply 
nodal resource requirements for bandwidth, memory, 
and processor (CPU) cycles. This holds because packets 
receive the same fundamental processing within each 
node. Unfortunately, the future deployment of active 
network technology promises to negate the simple, fixed 
relationship between packets and resource use. This will 
occur because each packet in an active network can carry 
code, or a reference to code, which must be loaded on 
demand and applied to the packet. This implies that in 
active networks the processing of individual packets can 
differ, demanding varying quantities of node resources, 
particularly CPU cycles. We set out to investigate how 
AVNMP might be used to predict resource consumption 
in an active network. This paper reports our initial 
findings. 

The paper is organized into seven sections. First, we 
provide a brief tutorial on active networks. Second, we 
describe how AVNMP uses active-network technology 
to predict traffic load in a conventional network. Third, 
we discuss how we augmented AVNMP to predict CPU 
usage in heterogeneous active networks. Here 
heterogeneity implies that the active network comprises 
a wide range of node types with various hardware 
capabilities and software configurations. This creates 
additional complexity because the demand for CPU 
cycles varies not only by packet type but also by node 
type. Fourth, we outline an experiment where we used 
AVNMP to predict resource consumption by an active 
audio application. Our results suggest that adaptive CPU 
models [3], which accommodate variations in node 
capabilities, can improve the accuracy of AVNMP 
predictions, and reduce prediction overhead. Fifth, we 
suggest some additional applications for AVNMP, and 
similar prediction systems. Sixth, we identify some 
future research suggested by our work. Finally, we 
present our conclusions from the current experiment. 
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ACTIVE NETWORKS 
Active-network technology augments traditional 
networking with the possibility that individual packets 
carry executable code, or references to executable code. 
Conventional packets are forwarded on the fast path of a 
router, while active packets are delivered to a higher-
level execution environment that can identify and run 
code associated with the packet. Networking 
applications built with active packets are referred to as 
active applications. Figure 1 illustrates the architecture 
of an active-network node [4]. 

Underlying each active-network node is a node 
operating system, which transforms the hardware into a 
software abstraction to provide execution environments 
with controlled access to resources such as CPU cycles, 
memory, input and output channels, and timers. In order 
to allow many possible operating systems to provide 
services to many possible execution environments, the 
active-network node architecture includes a standard 
specification of system calls (the Node OS Interface 
Layer in Figure 1) [5]. Execution environments, similar 
to virtual machines, can be loaded onto an active node 
using ANETD [6], a daemon that implements a load-
and-go protocol for execution environments. Each 
execution environment accepts active packets that can 
initiate the execution of packet-specific code. Each 
related code base and flow of active packets is known as 
an active application. In our experiment, we used the 
Magician execution environment [7], implementing an 
active audio application. AVNMP is also implemented 
as an active application. 

PREDICTING TRAFFIC LOAD 
To predict traffic load in a network, AVNMP constructs 
a shadow topology that overlays the operational network 
and then runs a simulation in the shadow topology. 

Figure 2 illustrates the relationship between the 
operational network and the shadow, prediction-overlay 
network. Using Magician, AVNMP deploys driving 
processes (DP) at each source node and logical processes 
(LP) at each intermediate and destination node in the 
topology of the operational network. DPs and LPs are 
deployed as active applications within an active virtual-
overlay network (space dimension in Figure 2). Each DP 
contains a model that simulates message sources, 
generating virtual messages that flow along links in the 
virtual-overlay network, which share physical links 
between nodes but remain logically isolated from 
operational traffic. As virtual messages arrive, the LP 
updates variables in the node’s management information 
base (MIB) [8]. Each LP updates the future state of 
relevant MIB variables, providing the MIB with 
predicted state to complement the current and past state 
maintained by the operational network. After updating 
predicted MIB variables, the LP consults the node’s 
routing table and forwards incoming virtual messages on 
to other LPs, if required. 

The prediction-overlay network then generates and 
routes simulated network traffic that attempts to run 
ahead in virtual time of operational network traffic (time 
dimension in Figure 2). While the operational network 
advances in real time, the LP in the prediction-overlay 
network advances in virtual time, receiving virtual 
messages and estimating future load. Periodically, the 
LP compares the actual and predicted MIB values for 
corresponding intervals in real and virtual time. If the 
values agree within an error tolerance, then the 
simulation remains ahead of real time and continues to 
advance. If not, then the LP rolls virtual time back to the 
current real time, discarding predictions for future MIB 
state, and then simulation resumes. AVNMP contains 
some special processing to cancel virtual messages that 
might be in transit across the prediction overlay network 
during a rollback, but we omit these details. 

PREDICTING CPU USAGE 
Once message load (in number and size) can be 
predicted, then CPU usage for conventional networks 
can be estimated. Since each node has a rating for per-
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message and per-byte throughput, a linear extrapolation 
should provide reasonable estimates for CPU use. 
Unfortunately, this simple approach cannot work for 
active applications because individual packets can 
require substantially different processing. Worse, 
identical packets can require different CPU time on 
various nodes. To enable AVNMP to predict CPU usage 
in active networks, we decided to investigate adaptive 
CPU modeling techniques as an alternative to the more 
rigid approaches used by most active-network execution 
environments to constrain CPU use by active packets. 

Every execution environment employs some 
approach to prevent erroneous or maliciously coded 
active packets from consuming excessive CPU time on a 
node or in the network. Some execution environments 
assign a fixed resource limit to individual active packets; 
some environments assign a maximum bound to any 
active packet; some environments combine these 
approaches. Such rigid techniques can cause significant 
problems for active applications because the CPU time 
needed to execute an active packet can vary from node-
to-node. Sometimes valid active packets can be 
terminated too soon because they exhaust their CPU 
limit. In other cases, erroneous or malicious active 
packets can “steal” excessive CPU time because they are 
permitted to execute for too long. Similarly, should 
AVNMP use these fixed limits to estimate CPU time 
usage for an active application, the estimates may be too 
low or too high, depending on the capabilities of 
individual network nodes. 

These problems motivated us to investigate adaptive 
models to represent the CPU use of active applications 
in a form that can be scaled among heterogeneous nodes 
[3]. We suspected that such adaptive models might 
improve the ability of AVNMP to predict CPU usage in 
heterogeneous active networks, while also reducing the 
number of simulation rollbacks. To investigate these 
hypotheses, we collaborated in an experiment, discussed 
next. 

AN EXPERIMENT AND RESULTS 
As shown in Figure 3, we constructed a four-node, 
heterogeneous active network, consisting of source (200 
MHz Pentium1 Pro/64 Mbytes) and destination nodes 
(450 MHz Pentium II/128 Mbytes) separated by two 
intermediate nodes: one faster (333 MHz Pentium II/128 
Mbytes) and one slower (100 MHz Pentium/64 Mbytes). 
All nodes included Magician running on a Java™ virtual 
machine (jdk 1.2.2) supported by Linux (release 2.2.7). 

                                                      
1 Commercial products are identified in this report to describe our study 
adequately. Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology. 
 

The operational active network comprised these nodes 
connected to a switched 10-Mbps Ethernet, which 
included a few other nodes that were not part of the 
experiment. We configured the experiment nodes to run 
an active audio application. The prediction overlay 
network included AVNMP deployed as an active 
application on each node, with a DP injected into the 
source node and an LP injected into the destination and 
each intermediate node. The DP included a message 
model to generate virtual message traffic and a CPU 
model to simulate processor use associated with each 
virtual message. Each LP included a CPU model to 
simulate processor use for each arriving virtual message. 

We conducted two experiment runs. In the first run 
the DP and LPs predict a fixed CPU time for each virtual 
message on every node. In the second run, the average 
CPU time predicted for each virtual message differs on 
each node. Table 1 shows the relevant experiment 
parameters at each node. 

Table 1. Relevant Experiment Parameters for Each Node 
 
We assigned 7 ms per packet for the fixed CPU time 

model. This figure was obtained by measuring the active 
audio application executing on the source node. Note 
that 7 ms equates to a different number of clock cycles 
on each node, depending on processor speed. To obtain 
variable predictions for the adaptive CPU time model, 
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we simulate that each virtual message consumes CPU 
time chosen from a statistical distribution, as determined 
by analyzing an execution trace generated when the 
active audio application runs on the source node. Each 
time an application returns from a system call, the 
execution trace records an event. Each event identifies 
the previous and current system call, and includes the 
amount of CPU time used in the current call, as well as 
the CPU time used in the execution environment 
between the two calls. Elsewhere, we explain how this 
execution trace can be used to model CPU-time use as a 
function of application behavior, specifically transitions 
between system calls and the execution environment [3]. 

 To adapt the variable time model to account for 
node differences, we calibrate [9] the ability of each 
node to execute system calls and an active-application 
benchmark within Magician. Further, we select the 
source node as a reference, and distribute its calibration 
results to all nodes. Since the variable-time CPU model 
is a function of the interactions between system calls and 
execution environment, a straightforward algorithm can 
transform the CPU model from local to reference form, 
based on the relative calibration performance of the local 
and reference nodes. After sending this application 
model to another node, the transformation can be simply 
inverted. As a result, the CPU model generated on the 
source node can be transformed into terms understood 
on any network node. Using this approach, the adaptive 
CPU time model predicts that each active audio packet 
will take 3 ms on the fastest intermediate node and 16.5 
ms on the slowest intermediate node. Our hypothesis: 
because an adaptive model more accurately represents 
CPU use in an application, as compared against a fixed-
time model, AVNMP should require fewer tolerance 
rollbacks; thus, the prediction-overlay network should 
provide better look-ahead into virtual time. 

For both experiment runs we fixed the relative error 
tolerance at 10 %, which means that AVNMP initiates 
tolerance rollbacks whenever the measured CPU use 
(averaged over 20 messages) differs from the predicted 
CPU use by more than 10 %. This tolerance, computed 
relative to predicted CPU use, equates to a different 
number of clock cycles for each node and run. Using a 
wider error tolerance would likely mask any 
improvements from the adaptive CPU time model. 

In conducting each run, the audio application 
emitted a stream of 91,105 bytes, and the intermediate 
nodes periodically measured the cumulative tolerance 
rollbacks and the virtual time. As shown in Table 1, the 
average measurement interval varied on each node due 
to the stochastic nature of thread scheduling in Java. 
Table 2 compares the results we obtained from our 
experiment runs.  

Over the audio streaming period, we can compare 
AVNMP performance for the same nodes when using 
the fixed CPU-time model vs. the adaptive CPU-time 
model. For both the fastest and slowest intermediate 
node, the adaptive CPU-time model induces fewer 
tolerance rollbacks. This permits AVNMP to reach a 
greater maximum look ahead into virtual time on each 
intermediate node. These results support our hypothesis, 
suggesting that use of an adaptive CPU-time model can 
improve the ability of AVNMP to predict resource usage 
in heterogeneous active networks. 

 

Table 2. Comparing AVNMP Performance  
with Fixed vs. Adaptive CPU-Time Models 

APPLICATIONS 
This paper describes two complementary innovations: 
(1) the use of active-network technology to deploy a 
shadow, prediction-overlay network that can estimate the 
future state of an operational network and (2) the use of 
application-level CPU-time models that can adapt to 
account for varying capabilities among heterogeneous 
network nodes. While complementary, the fundamental 
innovations can be applied independently to address 
existing and future needs within distributed systems. 

In the case of AVNMP, effective prediction of future 
network state can enable network managers to adapt 
network configurations in response to traffic overloads 
before the overloads actually occur. In addition, 
predicting resource demands at a node can enable the 
operating system to better schedule node resources and 
to provide better admission control decisions. Further, 
predicting resource use along network paths can help 
network management systems to estimate the quality of 
service available to distributed applications. In fact, one 
can envision the use of such predictive capabilities to 
respond to application queries seeking a network path 
that guarantees a specified quality of service. 

In the case of adaptive CPU-time models, one can 
imagine improvements in the safety and efficiency of 
Internet applications, which increasingly use mobile 
code, such as applets, scripts, and dynamically linked 
libraries, to deliver new software to millions of users. 
Without understanding the CPU time required by 
dynamically downloaded software, computer operating 
systems cannot effectively manage system resources or 
control the execution of mobile code. Unfortunately, 
since mobile code can be downloaded and executed on a 
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wide variety of computer systems with a vast range of 
configurations and capabilities, software developers 
cannot specify CPU requirements a priori.  

FUTURE RESEARCH 
While our adaptive CPU-time models appear promising, 
more research remains before the models can be 
practically applied. Three issues in particular must be 
resolved. First, our existing models assume that all 
application behavior can be measured prior to injecting a 
model into network nodes. Unfortunately, application 
behaviors often reflect conditions that cannot be known 
before a program reaches a node. For this reason, our 
application model must be enhanced to account for such 
node-dependent conditions. Second, our models consist 
of fine-grained histograms, which must be exercised 
with Monte Carlo simulations in order to predict CPU 
use. As a result, specific application models can be large 
and can require substantial computation to produce 
predictions. To some degree the space-time properties of 
our model can be modulated; however, the prediction 
error also varies accordingly. The third issue to be 
resolved involves error characterization. Before taking 
decisions based on predictions from CPU-time models, 
an operating system must consider the possible range of 
prediction error. We have yet to characterize the error 
properties of our models. The ability of AVNMP to 
maintain predictions within a specified error bounds 
offsets this weakness in the application discussed in this 
paper. 

With regard to AVNMP, we demonstrated the 
ability to make predictions of message load and CPU 
usage in a rather small network. We have yet to 
investigate how shadow simulations might be scaled to 
larger networks with thousands of MIB variables at each 
node. Our current system emulates real applications 
running in a logically isolated prediction-overlay 
network, which shares physical resources with the 
operational network. This approach will at minimum 
double the physical resources required from the 
operational network. We might be able to discover more 
efficient techniques to simulate future state. Such 
efficiency improvements, which are being explored in 
light of recent advances in the application of 
Kolmogorov complexity theory [10], could prove crucial 
when we attempt to simultaneously predict alternative 
future network states. If we can achieve this goal, then 
AVNMP might be used to estimate multiple future states 
in a network, perhaps even assigning a probability to 
each state. Given such capability, a network manager 
could simultaneously explore multiple “what-if” 
scenarios and could initiate network reconfigurations 

based on the most likely or most critical expected 
outcomes.  

CONCLUSIONS 
In this paper, we described AVNMP, a system that uses 
active-network technology to deploy and manage a 
distributed simulation running in a virtual, prediction-
overlay network. AVNMP can be used to predict the 
future state of network nodes and to maintain those 
predictions within specified error bounds. Specifically, 
we showed that AVNMP could predict both message 
load and CPU usage for a streaming-audio application 
running in an active network. Further, our experiment 
results suggest that in a heterogeneous active network 
the predictive performance of AVNMP, along with 
associated overhead, varies depending on the nature of 
the simulation models injected into the prediction-
overlay network. When we injected an adaptive CPU-
time usage model for the active audio application, the 
number of tolerance rollbacks decreased and predictive 
performance of AVNMP over that obtained using fixed 
CPU-time models. 
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